BERT Rediscovers the Classical NLP Pipeline

lan Tenney*¹, Dipanjan Das¹, and Ellie Pavlick^{1,2}
¹Google Research, ²Brown University

Overview

Question: Does BERT [1] learn linguistic abstractions, or is it just really good at summarizing co-occurrence statistics?

- BERT is a deep model. Do the layers make sequential decisions?
- Is linguistic information localized in different layers of the encoder?

Takeaways:

- Linguistic abstractions appear in a consistent order, with POS tagging in lower layers, followed by parsing, NER, semantic roles, then coreference.
- But, individual decisions don't always follow this: low-level decisions can be revised based on high-level information.

BERT by Layer

For each task τ , train probing classifiers $\{P_{\tau}^{(\ell)}\}$ for $\ell=0,1,...,L$

Scalar Mixing Weights:

ELMo-style: let $s_{z} = softmax(a_{z})$, and

$$\mathbf{h}_{i,\tau} = \gamma_{\tau} \sum_{\ell=0}^{L} s_{\tau}^{(\ell)} \mathbf{h}_{i}^{(\ell)}$$

Center-of-gravity:

Cumulative Scoring:

$$\Delta_{\tau}^{(\ell)} = \operatorname{Score}(P_{\tau}^{(\ell)}) - \operatorname{Score}(P_{\tau}^{(\ell-1)})$$

Expected layer:

$$\mathsf{E}_{\Lambda}[\ell] = \mathsf{\Sigma}_{\ell} \, \ell \, \mathsf{\Delta}_{\tau}^{(\ell)} \, / \, \mathsf{\Sigma}_{\ell} \, \mathsf{\Delta}_{\tau}^{(\ell)}$$

Tasks appear in a consistent order, reflecting the traditional NLP pipeline!

BERT-base (12 layer)

BERT-large (24 layer)

Edge Probing

Probing suite [2] recasts tasks as edge labeling:

Given contextual vectors $E = [e_0, e_1, ..., e_n]$, predict:

- Unary: label(s) for span1 = $[i_1, j_1)$
- **Binary:** label(s) for (span1 = $[i_1, j_1)$, span2 = $[i_2, j_2)$)

Common classifier model [2] over frozen encoder, with ELMo-style mixing over layers {0,1,...,}.

Per-layer Contributions

Solid blue: scalar mixing weights (s)

Light purple: relative improvement in F1 score (Δ) K(*): KL(* | Uniform) over all layers

Tracing a Sentence

SRL

OntoNotes: τ = {POS, constituents, entities, SRL, coref} Collect predictions {P $_{\tau}^{(\ell)}$ } for ℓ = 0, 1, ..., L for each task

ARG0

Other

"he smoked **toronto** in the playoffs with six hits, ..."

Entities: from **GPE** → **ORG** in layers 3-7

[2, 4) "blacked" -- [1, 2) "today"

"china **today** blacked out a cnn interview that was critical ..."

POS: from NN → NNP in layers 3-5

Entities: from **DATE** → **ORG** in layer 4-5

SRL: consider **ARGO** from layers 6-9

References

- [1] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al., NAACL 2019)
- [2] What do you learn from context? Probing for sentence structure in contextualized word representations (Tenney et al., ICLR 2019)