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Edge Probing

Question: Does BERT [1] learn linguistic abstractions, or is it just really good at

summarizing co-occurrence statistics?

- BERT is a deep model. Do the layers make sequential decisions?
- Is linguistic information localized in different layers of the encoder?

Takeaways:

- Linguistic abstractions appear in a consistent order, with POS tagging in lower
layers, followed by parsing, NER, semantic roles, then coreference.

- But, individual decisions don't always follow this: low-level decisions can be
revised based on high-level information.
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Probing suite [2] recasts tasks as edge labeling:
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Given contextual vectorsE =g, e, ..., € ], predict:
- Unary: label(s) for span1=i, j.)
- Binary: label(s) for ( span1 =i, j.), span2 = [i,,j,) )

Common classifier model [2] over frozen encoder, with

BERT by Layer ELMo-style mixing over layers {O,1,...,8}.
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Tracing a Sentence

OntoNotes: 7 = {POS, constituents, entities, SRL, coref}
Collect predictions {P ¥} for 2 =0, 1, ..., L for each task

“he smoked toronto in the
playoffs with six hits, ... ”

Entities: from GPE = ORG in layers 3-7

SRL Entities

SRL: conclude ARG1 by layer 2-3
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— Entities: from DATE = ORG in layer 4-5
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ARG SRL: consider ARGO from layers 6-9
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POS: from NN = NNP in layers 3-5
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Per-layer Contributions
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